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OBJECTIVE
Pressure vessals often have notches or other stiess concentrations
present. Considering further that pressure vessels ar: neariy always
subjected to sone cyclic loading, fatigue cracking at notches is an important
problem. The objective here is to describe some fatigue life testing and
analysis which was performed with notched specimens in order to deteruine the
effe;ts of notch overload on fatigue 1life of pressure vessels,
The ovarloading of a notched component is parallel in many aspects to the
b overstraining of a thick-wall tube. In the same way that compressive circum-
ferential residual stress produced near the inrer diameter of an overstrained
tube increases the fatigue life (ref 1), the tensile overload of a notch ran
increase notch fatigue 1life (vef 2). The increase in life of an overloaded
notch can be attributed, as with an overstralned tube, to compressive residual
stress, in thir case produced locally at the no*ch root. The tests and

analysis described here identify some of the conditions and effects of notch

overload.

TEST FROCEDURES
Specimens

Previonsly, internal pressure fatigue tests of pr2ssure vessel sections
were performed (ref 3), but they took considerable time. In order to

investigate a variety of test conditions, simpler laboratory teits were used

(refs 2,4)., Figure 1 shows the two general types of lab tests used in

previous work (refs 2,4) and in the results here. Details of the test

References are listed at the enc of this report.
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specimens will be given in ths upcoming discusaion of Table 1. The hollow
disk specimen shown as Figure 1(a) 1s sliced out of a relatively thick-wall
cylinder, that is, one with cuter to inner diemeter ratio of about 2.0. Ii is
loaded in compression, so that the area of the notch is subjected to fensile
circumferential stress., The tensile-loaded zpecimen, Figure 1(b), ims similar
to the compact spscimen used fcr fracture testing (ref 5). A half-disk
specimen, called the arc specimen (ref 5) was also used in a similar way to
that shown in Figure 1l(b), for forging #2 tests.

Test Conditions

? Eight different notches were tested with stress concentration factors,

Ky, from about 1.5 to 4. See details in Table 1, which alsv shows the notch

root radius, p, and other pertinent dimensions. The material for all teats
was ASTM A723, Grade 2, a high strength nickel-chromium-molybdenum steel used
for pressure component forgings. The test material was taken from six
forgings with somewhat different manufacturing processes, but all included a
vacuum degassing process. The yileid strength, Oy, ranged from 1030 to 1200
MPa, as listed in Table I,

The loading of th: test specimens was constant amplitude fatigue at from
3 to 30 Hz, with maximum load, Ppgx, and load ratio, R = Ppin/Ppax, 88 shown
in Table I. The general level of load was chosen so that fatigue lives would
be in the relatively low-cycle range, that is, from about 1000 te 100,000
cycles. A crack of a few millimeters surface length typically developed on
the notch root surface at about one-half of the eveutual fatigue life, which

was determined when the specimen broke in half. The average fatigue livaes, N,

listed in Table I, are the mean of two replicate tests, except for the three

[S8]

et e



single teuts indicated.

TABLE I. CONDITIONS FOR LIFE AND OVERLOAD TESTS

Specimen Geometry Material Loading
Ke | o a h L B x |Forge| oy IPmax | R N
~~ | om | mm | @mm | mm | mm | om # (MPa | kN ~ |Cycles

2.18) 3.4]16.0] 6.8]40.0}10,0(28.0f 1 |1040|+15.6{0.10}/83,000
1.53)12,7)12.7125.4143,7]25.41136 2 ]1030|+25.4}0.10}29,800
1.63{18,0/50.8)36.0{102 |25.4}76.0] 3 1110]+111 |0.10{18,700

3.80f 1.3}11.6}15.8]59,5]50.8]140 4 11190}-190 |0.42} 4,330
-7 6.0 0.62 74,“00

1.981 7.9(11.6{15.8]59.5{50.8{140 4 11190]-190 {0.42{10,200

1.95) 6.4)25.4]12.7157.2{25.4]126 5 {1200}-34.5/0.10] 4,900 (1)
| -23.6/0.10{16,200 (1)
¢ "1506 0.&0 lﬁ“,600

2.41]1 1.5] 5.0125.4]57.5150.R|194 6 J1170{-175 |0.541 9,800
~132 ]0.39|41,700

3.17} 1.5)10.0}25.4]57.5{59.8{192 6 }1170|-175 j0.54] 2,780
=132 |0.39{ 4,170
-52.910.239182,206 (1)

RESULT3 AND ANALYSIS

| Ky Approach
Results of twenty-five notch fatfigue tests are shown in Figure 2(a).
Fatigue life is plotted versus maximum stress, Omyx, normalized by Oy. As
shown, Opax 18 calculated as the product dpom Kt. The waximum nominal stress

in all tests here is defined as
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where B, W, a, x are as shown in Figure 1. Equation (1) describes the sum of
bending stress, &x/H-a, and either tensile or compressive direct atress, the
t 1 term, on the unnotched ligament of the spucimen. The K, values used,
listed in Table I, were determined from photoelastic analysis (ref 6) for the
forging #1,2 tests, from a K; compendium (ref 7) for forging #3,4,5 tests, and
from finite element aralysis {(ref 4) for the forging #6 tests,

The test results fall into two groups indicated by the dashed lines.
Load ratio is the sepsratinyg parameter, with higher R leading to higher
fatigue 1ife, as would be expected. When R is included in the stress
parameter in Figufe 2(b), so as to change Op,sy tc stress range Acg, all the
Lest results can be represented by the single least squaree line shown. This
result is consistent with observations that low-cycle fatigue life is
determined by total strain range. Even though it was elastic stress range
which was controlled in the tests, this in effect controls the total strain
range at the notch root (ref 8). Particularly for high strength notched
components, the elastic stresses throughout tﬁe component impose a certain
total strain range at the notch.

wipl/2 Approach

Rolfe and Barsom (ref 8) proposed that the well-known expression for the
waximum tangential stress st an ideal elliptical notch can be used to
calculate notch root stresses at many notches of practical concern. The

expression,

Opax = 112 K/pl/2 (2)
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where K is stress intensity factor, and p is notch root radius, is exact only
for p * 0, but it provides useful approximations for finite p. Figure 3 shows
the fatigue life results plotted using Eq. (2) to calculate Ac. The (1 +
p/po) term, with an arbitrary po = 10 wm, was added here so that the data over
the whole range of p could be reprcsented by one expression. The result is a
least squares fit line with very similar slope and correlation coefficient as
those using the K. approach.

Reviewing Figures 2(b) and 3, it ie clear that both approaches give an
adequate description of fatigue life over a significant range of material
propecrties and notch gaometries. These fatigue life descriptions are useful
for design as well as for baseline data for investigation of additional

effects on fatigue life, such as the effect of mechanical overload, discussed

below.

Mechanical Overload

Fifteen overload tests were performed which were identical to the tests
summarized in Figure | and Table I, except that a single mechanical overload
was applied to the specimen before fatigue loading. The overload was in the
same direction as the subsequent fatigue loading, and with magnitude such that
tensile tangential stress was produced well into the plLastic range., The
intent was that the elastic recovery upon removal of the overload would leave
the notcih root with compressive tangential residual stress. The fatigue life
of the overloaded specimens was determined and normalized by the mean life of
tests with no overload; see Figure 4. Various overload ratios are shown, from
Pov/Ppax = 1.5 to 3.0. An increase in overload ratio increases life rutic in

some cases, as indicated, for example, by the tests at Ao/oy = 0,5. Two tests




with Poy/Pagx = 2.0 gave NOV/E of about 2.9, while the test with Poy/Fpax *
3.0 gave Nov/§ of 11.2, at the point when the test was in-errupted at 500,000
cyclea with no crack,

The most significant result of the overload tests was the clear boundary
between beneficial and deleterious effects of overload on fatigue life; see
Figure 4. For the nine tests with Ao/oy < 1, the 1ife following an overload
wags in each case longer than the average life with no overload, that is, N,/

} N > 1. For the six tests with 4a/oy > 1, all but one gave Nov/g <1l, 1In

order to define the two types of effect on fatigue life and the boundary

between them, least squares fits of the two sets of data were performed.

Since the data with Ac/oy < 1 showed a smaller range in 40/0y than in Nov/ﬁ,
the variation in Ao/oy was minimized to obtain the least squares line. The
otaer daca group showed a smaller range in Novlﬁ, 80 this parameter was
ainimized. The resulting least squares lines confirm and quantify the
apparent trend of Figure 4, that tensile overload increases notch fatigue life
for loading in which Ao < oy. For fatigue loading in which Ac > gy, overload
decreases life.

Thermal Overload

Tests have been performed using specimens of the type in Figure 1(a), to
determine if thermal streases can be used to produce beneficial overloads. 1In
the same general way that a mechanical overload produces compressive resfdual
stress at a notch, thermal loading can be used, in principle, to produce
favorable residual streas at a notch., The tests were performed to determine

1f the principle could be put to practice.




The test conditions for the thermal overload teats are out.ined in Table
I1. Three combinations of specimen geometry and cyclic loading were used
which weve identical to three of the coaditions for the baseline fatigue life

and mechanical overload tests described in Table I.

TABLE II. CONDNLTIONS FOR THERMAL OVERLOAD TESTS

[ Fpax Thermal Loading N ﬁ
Specimen |mm kN Location ~ Coolant AT Cycles |Cycles
#1 1.3 |190 inotch interior i air near zero 4,200 | 4,330
#2 1.3 |190 |notch interior water - 4,800 | 4,330
#3 13 | 76 |notch interior wvater - 90,600 |76,000
#4 5.4 |15.6 |outer diameter water 111°C 60,000 |4-,600
5 6.4 115.6 jouter dismeter water 224°C 172,000 44,600

The thermal overload procedure is shown in Figure 5. The test specimens
were made from the same two cylinders as the earlier mechanical overload
tests. These cylinders had cverstrain residual stresses present before being
cut into specimens. The overstrain residual stresses wers reintroduced into
each of the thermal overload specimens using a clamp as shown in Figure 5.
Resistance ctrain gages, applied to the inner diameter surface at the notch
location, were used to determ!. 2 the clamping conditions for the tests. The
specimens were clamp=d so that the circumferential direction strain reading
was returned to that measured from the specimen with the notch present, but
before the cut through the wall was made. Thus, the thermal loading was
performed on specimens with an outer diameter surface tensile ctress already

applied which was about the samne magnitude as the residual tensile stress
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present ir the overstrained cylinders. The circumferantiai direction tensile
residual stress at the outer diameter surface of the cylinders considered
here, that is, for nominal outer—-to—inner diameter ratio of 2.0 and material
yield strength of 1200 MPa, was about 700 MPa (ref 3).

The actual thermal overload occurred when the specimen and clamp assembly
was remcved from a furnace at 370°C and coolant was immediately applied.
Specimen #1 was a control with no coolant applied except for natural
convection «ir. No significant temperature gradient nor associated effect on
fatigue life was expected or cbserved. Specimens #2 and #3 were cooled with
water sprayed only into the notch. All other surfaces of the specimen were
protected from water contact. Relatively small and possibly significant
increases in fatigue life were observed in these specimens with notch cooling.

The most significant thermal overload tests were with specimens #4 and
#5. Before testing, thermocouples were welded on the inner and outer diameter
surfaces at an angular location of 45° from the notch. The specimen faces and
inner diameter surface were covered with glass fiber insulation so that only
the outer diameter surface would be subject to coolant. The specimens were
heated to 370°C and then cooled by immersion in room temperature water.
Temperature recordings, taken every three seconds, showed that the maximum
temperature difference, AT, between inner and outer surfaces occurred after
about twelve seconds. The AT values are shown in Table II.

A comparison of fatigue life results from thermally overloaded specimeanus
with the previous res''ts from mechanically overloaded specimens is shown in
Figure 6. Although only five thermal tests were performed, encouraging trends

can be identified. First, no significant decrease in fatigue life has thus




i S —
e e e g
d R o S

far been observed for specimens subjected to therwal overload. Second, a
significant increase in fatigue life can be produced by thermal overload, as
indicated by the nearly fourfold increase in life of specimen #5 compared to

identical specimens with no overload.

SUMMARY

Both the stress concentration factor approach, 0,4, K., and the fracture
mechanics approach, K/pllz, for calculating stress range give a good
representation of notch fatigue life. This iundicates that both approaches
provide adequate measures of notch root stress during fatigue loading for a
1nge of material properties and rictch geometries.

1ae point at which atrees range at the notch root, 40 equals yield
strength, Oy» is a clear becundary between two overload effects, above which
overload reduces uwotch fatigue life and below which overload incresses life,
by a factor of 10 or more in some cases, This indicates that fatigue loading
with 4 > Oy overvhelms and relieves the compressive residual stress produced
by overload, so that the remaining effect of overload is to use up some of the

notch toughness of the material and vesult in a decrease ir fatigue life.

Results thus far indicate that 2z thermal overload can aleo produce, for
appropriate conditions, an increase in fatigue life, possibly as significaat
an increase as that due to a wechanical overload. Further, no significant

decrease in fatigue life has been ubserved for thermally overloaded specimens,

even vhen fatigue tested under conditions for which mechanical overload causes

a decrease in life. Thus, it appears that thermal overload does not cause the
sane damage to material toughness as that which can be caused by mechanical i

overload.
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Figure 2. Fatigue life versus opax and Ao calculated using K¢ approach.
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at the following address: Commander, Armament Research and Development
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1. Benet Wsapous Lah, Report Number

2. Please evaluate this publication (check off one or more as applicable).
Yes No
Information Ralevant
Infornation Technically Satisfactory

Format Easy to Use
Overall, Useful to My Work
Other Comments

3. Has the report helped you in your own areas of interest? (i.e. preventing
duplication of effort in the same or related fields, savings of time, or
money) .

4, How i3 the report being used? (Source of ideas for new or improved
designs. Latest information on current state of the art, etc.).

5. How do you thiuk this type of report could be changed or revised to
i{mprove readability, usability?
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please fill in the followiug information.
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